Characteristic Galerkin Scheme Based on Mixed B-spline Approximations for Incompressible Flows
نویسندگان
چکیده
منابع مشابه
Three-dimensional characteristic approach for incompressible thermo-flows and influence of artificial compressibility parameter
In this paper the characteristics of unsteady three-dimensional incompressible flows with heat transfer are obtained along with artificial compressibility of Chorin. At first, compatibility equations and pseudo characteristics for three-dimensional flows are derived from five governing equations (continuity equation, Momentum equations in three directions, and energy equation) and then results ...
متن کاملSymbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis
We consider the stiffness matrices coming from the Galerkin B-spline isogeometric analysis approximation of classical elliptic problems. By exploiting specific spectral properties compactly described by a symbol, we design efficient multigrid methods for the fast solution of the related linear systems. We prove the optimality of the two-grid methods (in the sense that their convergence rate is ...
متن کاملError estimates for semi-Galerkin approximations of nonhomogeneous incompressible fluids
We consider the spectral semi-Galerkin method applied to the nonhomogeneous Navier-Stokes equations. Under certain conditions it is known that the approximate solutions constructed through this method converge to a global strong solution of these equations. Here, we derive an optimal uniform in time error estimate in the H norm for the velocity. We also derive an error estimate for the density ...
متن کاملError bounds for semi-Galerkin approximations of nonhomogeneous incompressible fluids
We consider spectral semi-Galerkin approximations for the strong solutions of the nonhomogeneous Navier-Stokes equations. We derive an optimal uniform in time error bound in the H 1 norm for approximations of the velocity. We also derive an error estimate for approximations of the density in some spaces L r .
متن کاملMixed hp-DGFEM for Incompressible Flows
We consider several mixed discontinuous Galerkin approximations of the Stokes problem and propose an abstract framework for their analysis. Using this framework we derive a priori error estimates for hp-approximations on tensor product meshes. We also prove a new stability estimate for the discrete divergence bilinear form.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM))
سال: 2012
ISSN: 2185-4661
DOI: 10.2208/jscejam.68.i_149